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1 Use of Online Learning Method with KLMS
in RKHS

In this chapter, we introduce the reader to the problem of non-linear function
approximation over Reproducing Kernel Hilbert Spaces(RKHS), and formulate
online solutions like the Kernel Least Mean Squares(KLMS) algorithm toward
solving problems worked upon in [1]–[5].

First we introduce the terminology followed herein. Let x denote the given
sample and y be the output where the output y = f(x) where f(·) is a non-linear
function. The value y is approximated using linear regression using gradient
descent [6]–[8] on the given samples for multiple iterations. Let (·)i denote value
of (·) at iteration i; and fi denote the estimate of function f at ith iteration.
Thus, for learning fi, the samples x1, x2, . . . , xi along with the known outputs
for the respective inputs as y1, y2, . . . , yn.

Due to the inherently non-linear relation between y and x, a kernel function
k is used.

This k, in RKHS can be said to be reproducible by function φ as k(xi, xj) =
〈φ(xi), φ(xj)〉. This will be further studied in the next chapter.

For KLMS, the instantaneous mean squared objective is considered. This
objective is minimized and thus the function is approximation is performed via
stochastic gradient algorithm. Let L denote the loss function. So,

L(f) = (y − f(x))2

Thus using online learning,

fn = fn−1 + µεnk(xn, ·)

here, ε = y − f(x) and µ is the step size
So, after n − 1 iterations, output function appears to be (when the inital

function is f0 = 0T·):

fn−1 =

n−1∑
i=1

αik(·, xi)

(Here αi = µεi)
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2 Kernel Approximation through Random Fourier
Features

In this chapter, the theory of Random Fourier Feature space(RFFs) is reviewed
for approximation of feature map φ. The approximation of the function φ(·) is
denoted by zΩ(·).

Kernel-based learning methods involve a large number of kernel evaluations
between training samples. In the batch mode of operation, for example, this
means that a large kernel matrix called the Gram Matrix has to be computed,
increasing the computational cost of the method significantly [9]. Hence, to
alleviate the computational burden, one common approach is to use an approx-
imation to the kernel evaluation.

The most common methods are Nyström method and random Fourier Fea-
ture approach [3] that are compared in [10].

Random Fourier Features is one of the viable methods for approximation
of feature map where the input data is mapped to an approximate RKHS.
The input data space vectors x are mapped to an approximate RKHS vectors
zΩ(x) ∈ RD with dimension higher than that of the input space (but less than
H) using a randomized feature map.

zΩ : Rd → RD

k(xn, xm) = 〈zΩ(xn), zΩ(xm)〉

Theorem 1 (Bochner[11]) A continuous function k(x, y) = k(x − y) on Rd
is positive definite if and only if k(δ) is the Fourier Transform of a non-negative
measure.

Theorem 2 (Rahimi and Recht[3]) Consider a shift invariant positive def-
inite kernel k(x− y) defined on Rd and its Fourier transform

p(ω) =
1

(2π)d

∫
Rd
k(δ)e−iωδdδ

which (according to Bochner’s Theorem) it can be regarded as a probability
density function. Then, defining zω,b =

√
2cos(wTx + b) it turns out that

k(x−y) = Eω,b[zω,b(x)′zω,b(y)] where ω is drawn from p and b from the uniform
distribution on [0,2π].

Thus for D dimensions, approximating k using D Fourier features drawn
from probability density function p (w1, w2, . . . , wD) and D random numbers
(b1, b2, . . . , bn) from uniform distribution gives

k(xn, xm) ≈ 1

D

D∑
i=1

(zwi,bi(xn)zwi,bi(xm))

4



For Gaussian kernel, the Fourier transform is p(w) =
(
σ/
√

2π
)D

e−
σ2||w||2

2

which evaulates to a multivariate Gaussian function with covariate matrix ID
σ2

and mean 0D

Thus zΩ(·) can be represented as:

zΩ(u) =

√
2

D


cos(wT1 u+ b1)
cos(wT2 u+ b2)

...
cos(wTDu+ bD)

 ; Ω =

(
w1w2 . . . wD
b1b2 . . . bD

)
(d+1)×D

Using this RFF based approximation of an kernel, the regression model
follows as:

fn−1(xn) ≈

(
n−1∑
i=1

αizΩ(xi)

)T
zΩ(xn)

which can be written as f(xn) ≈ θT zΩ(xn) Thus, the function approximation
can be performed by a stochastic gradient update on θ as follows:

θn = θn−1 + µεnzΩ(xn)

The approximation for the Guassian kernel κ(4) = e−γ||4||
2

is approximated
using 1000 Random Fourier Features as shown in the following graphs as in
Figure ??.

Figure 1: Kernel Approximation
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3 Review of Adaptation Strategies for Distributed
Learning over Networks

In this chapter, we review various adaptation strategies for learning over net-
works. We first present the network model, then the data model is presented,
and finally some distributed adaptation algorithms are reviewed.

3.1 Network model

In this section, the network model is presented which is adopted from [2].
We consider a network with a set of nodes given by N , such that |N |=N

and Nk denote the neighbourhood of node k (including k).
The convex combination scalars {alk} are chosen such that they satisfy

alk ≥ 0
Σ

l∈Nk
alk = 1

alk = 0∀l /∈ Nk

The combination matrix is denoted by A = {alk}N×N where alk ∈ [0, 1]
which which is the measure of confidence of node l on node k’s regression vector
w. Thus, the A can be adjusted according to the noise at the node k. The
matrix A varies according to the combination policy. Possible choices for com-
bination matrix A are Metropolis, Laplacian and the nearest neighbors in case
of non-adaptive combination matrix [12]–[14]. An adaptive combination matrix
is modelled using Hasting’s rule or relative-variance rule wherein the variance of
noise is taken into consideration [2]. In current model, Metropolis combination
matrix is chosen.

3.2 Data model

Considering the global cost function for the network, then wo (network goal) is

wo = arg
w

min

N∑
k=1

Jk(w)

Considering J(w) to be strongly convex that is ∇2
wJ(w) > 0

Also,
min
w
J(w) ≡ min

w
EQ(w; x)

wi ← wi−1 − µ · ∇wQ(wi−1; xi)

The conditions of step size µ(i) can be outlined by [2], [4].

∞∑
i=0

µ(i) =∞
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∞∑
i=0

µ2(i) <∞

µ(i) =
c

ip
, p ∈

(
1

2
, 1

]
This introduces gradient noise s(w) as we must be using cost function or

risk function J(w) instead, we are using loss function Q(w)

s(wi−1) , ∇wQ(wi−1)−∇wJ(wi−1)

Where Jk(w) is the loss calculated at node k for parameter vector w. N is
the number of Nodes in the Network N . The neighborhood of k is denoted by
Nk

3.3 Basic strategies to update w

In this section, some distributed adaptive strategies are reviewed for enhanc-
ing the understanding of the reader while formulating RFF based detector for
massive MIMO.

3.3.1 Non cooperative strategies

In this case, each agent applies its own LMS and thus, has updation formula:

wk,i = wk,i−1 + µu∗k,i[dk,i − uk,iwk,i−1]

Here MSDk , limi→∞E||∼wk,i||2
For sufficiently small step size, it is shown in [4] that

MSDncop,k ≈
µM

2
σ2
v,k

the rate towards convergence here is:

r ≈ 1− 2µ · λmin(Ru)

That is dependent on smallest eigenvaue of Ru matrix
For overall network [2] shows that

MSDnetwork
ncop ≈ µM

2

(
1

N

N∑
k=1

σ2
v,k

)

3.3.2 Centralized Fusion-Based Solution

For applying LMS at a central processor, the input and the response will tapped
at the agents and will be sent to a central fusion processor which gives the
updated estimator for wo from wi−1 to wi for the iteration i.

7



The updation strategy for the estimator as shown in [2] is followed as

wi = wi−1 + µ

(
1

N

N∑
k=1

(u∗k,i[dk,i − uk,iwk,i−1]

)
It is thus deduced that

MSDcent ≈
µM

2

1

N

(
1

N

N∑
k=1

σ2
v,k

)

Thus, an N fold increase is observed as compared to MSDnetwork
ncop .

3.3.3 Diffusion Strategies

Diffusion strategies allow the solution to be found in a distributed and adaptive
manner. Compared to the noncooperative solution, these strategies introduce
a useful aggregation step that helps incorporate into the adaptation mecha-
nism information collected from the local neighborhoods. Diffusion strategies
as compared to consensus have relatively more stable convergence.

Combine-Then-Adapt (CTA) In this diffusion strategy, the estimators of
the neighbors are aggregated using the combination matrix and then the esti-
mator is updated according to the LMS strategy.

Thus, we find an intermediate value of the estimator ψk,i−1 for the agent k
by aggregating the estimator’s values at the neighbors of the agent k after the
iteration i− 1.

Thus the updation strategy is{
ψk,i−1 =

∑
l∈Nk alkwl,i−1

wk,i = ψk,i−1 + µu∗k,i[dk,i − uk,iψk,i−1]

OR

wk,i =
∑
l∈Nk

alkwl,i−1 + µu∗k,i

[
dk,i − uk,i

∑
l∈Nk

alkwl,i−1

]

Adapt-Then-Combine (ATC) In this diffusion strategy, the estimators
adapted according to the behaviour of unknown model observed by the agents
as the intermediate value of estimator for the iteration i. The values of the in-
termidiate estimators of the neighboring agents are then aggregated according
to the combination policy to get the updated value of estimator.

The updation policy is thus specified mathematically as{
ψk,i = wk,i−1 + µu∗k,i[dk,i − uk,iwk,i−1]

wk,i =
∑
l∈Nk alkψl,i

OR
wk,i =

∑
l∈Nk

alk(wk,i−1 + µu∗k,i[dk,i − uk,iwk,i−1])

8



3.3.4 Consensus

In consensus based distributed adaptive filtering, the stochastic adaptation over
node k is performed upon the combination of the estimator functions of Nk and
is subject to error in detection of correct symbol in the previous iteration by
node k which makes this strategy relatively unstable. This has been shown in
[2].

For two time scale approach, the updation strategy becomes

wk,i =
∑
l∈Nk

alkwl,i−1 + µu∗k,i [dk,i − uk,iwk,i−1]

The simulation was thus conducted for different strategies and the result is
shown in Figure 2.

Figure 2: Learning over network
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4 Review of Classical MIMO Recievers

4.1 MIMO

MIMO stands for multiple input multiple output. In this type of transmission,
the diversity and the spatial multiplexing is used to harness the benefits of
multiple antennas to give better signal reception and higher data rates

4.2 Methods used for simulation

• Zero Forcing (ZF) recievers
• Minimum Mean Squared Error (MMSE) estimator reciever
• ZF with SIC
• MMSE with SIC

4.3 System Model

Consider Nt transmitters and Nr receivers, with the transmitter signal x and
received signal y represented as:

x =


x1

x2

...
xNt

 ; y =


y1

y2

...
yNr


The received signal follows as:

y = Hx+ n

Where HNr×Nt is the channel matrix and nNr×1 denotes additive white Gaus-
sian noise (AWGN) vector.

4.4 Condition Number

Condition number is a ratio of biggest and smallest singular values and quantifies
correlation and noise. Condition number is a measure of how sensitive the
function is to errors in input. As the condition number increases, the noise is
amplified as the ratio between the spectral value and the smallest singular value
increases. The ideal value of condition number for MIMO is 1 (or 0dB) and
values below 10dB or 10 are desirable.

The condition number of moment matrix in linear regression can be used as
diagonastic for collinearity. A moment matrix with a low condition number is
called well-conditioned and otherwise is called ill-conditioned.

Condition number of matrix, where κ(H) denotes the condition number of
matrix H is:

κ(H) =
σmax

σmin

10



4.5 Zero Forcing

As y = Hx+ n
We here want to minimize ||x̂− x||2
Thus we take

x̂ = H†y

This is known as zero forcing receiver. Here we are taking the inverse of the
channel matrix H. For a non invertible channel matrix, its pseudo-inverse H† =
(HHH)−1HH is used.

x̂ = (HHH)−1HHy

4.6 Drawbacks of ZF

As
x̂ = (HHH)−1HHy

Thus,
x̂ = H†(Hx+ n) = x+H†n

Notably, if the channel matrix is ill-conditioned the variance of the noise is
amplified due to pseudo-inverse operation.

The condition number is specified by

κ(H) =
σmax
σmin

4.7 Minimum Mean Square Error estimation

E||x̂− x||2 has to be minimized here.
Suppose x̂ = cT y . Thus, we want to minimize E||cT y − x||2 :
F = E||cT y − x||2 = E(cT y − x)(cT y − x)T

F = E(cT yyT c− xyT c− cT yxT + xxT )
F = cTRyyc−Rxyc− cTRyx +Rxx
F = cTRyyc− 2cTRyx +Rxx
∇cF = 0 = 2Ryyc−Ryx
Ryyc = Ryx
c = R−1

yy Ryx
x̂ = cHy = RxyR

−1
yy y

x̂ = (HHH + σ2I)−1HHy

4.8 Theoretical Comparison between ZF and MMSE Re-
ceivers

In MMSE, the condition number is given by

κ(H) =
σmax + σ2

σmin + σ2

11



Thus for high SNR, the performance of MMSE based receiver is equivalent of
ZF; however at low SNR, MMSE can be viewed as a matched filter.

Also, it can be found that as σ2 >> σmax, σmin, κ(H) ≈ 1 which circumvents
the problem of noise amplification.

4.9 SIC Techniques to Improve Nulling estimators

The estimate of x can be further improved by successively cancelling the inter-
ference.

y1 = h1,1x1 + h1,2x2 + n1

y2 = h2,1x1 + h2,2x2 + n2

Taking Px1
= |h1,1|2 + |h2,1|2 Px2

= |h1,2|2 + |h2,2|2, x̂1 and x̂2 can be found
with techniques like ZF, MMSE, etc. and then re-estimate the signals with
lesser power after subtracting the higher power terms from the observed signal.

4.10 ZF SIC

First ZF is applied 
x̂1

x̂2

...
x̂Nt

 = H†y

The power is calculated as

Px1
= |h1,1|2 + |h2,1|2 + · · ·+ |hNr,1|2

Px2
= |h1,2|2 + |h2,2|2 + · · ·+ |hNr,2|2

...

PxNt = |h1,Nt |2 + |h2,Nt |2 + · · ·+ |hNr,Nt |2

according to the ordering of power,
The x̂ with the highest power is assumed as it is and after that, that symbol

is removed from the rest of the data.
Thereafter x̂ is recalculated using ZF technique.

4.11 MMSE SIC

The MMSE SIC based receiver is similar to ZF except the calculation of x̂ is
done using the MMSE technique instead of ZF. That is

x̂1

x̂2

...
x̂Nt

 = ((HHH + σ2I)−1HHy

12



Figure 3: Successive Interference Cancellation (adapted from [15])

This is followed by finding the sorted order of power and thereafter is re-
moved from the signal and the process is repeated to find values of all x̂i

4.12 Theoretical Performance

As the SIC technique differentiates between near user and far user, it has a
lower BER than the non SIC techniques. Also, due to the problems with ZF
discussed earlier, the MMSE technique has a lower BER than ZF for low SNR
but approaches ZF at high SNR.

Therefore,
BERZF > BERMMSE

BERZF > BERZF SIC

BERMMSE > BERMMSE SIC

BERZF SIC > BERMMSE SIC

4.13 Simulation Results

It is thus observed that all the theoretical statements hold here and observe that
at less than 34 dB for the given Rayleigh Channel, the MMSE SIC achieved close
to 0 BER which happened at less than 36 for ZF-SIC, and less than 42 for ZF
and MMSE.
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Also it is observed that MMSE approaches to ZF at close to 38 dB SNR.

Figure 4
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5 Contribution: KLMS based Parallel Multiuser
Detector for Massive-MIMO

5.1 Motivation

The paper on RKHS based online detection [1] discusses detection of transmitted
signal by using a Gaussian Kernel and learning inputs and detecting output from
them using learning via dictionary. Implementation of Parallel MU Massive
MIMO detector by learning using Kernel Approximation and learning using
Linear Regression was studied in this problem.

5.2 System Model

In this section, the system model of the considered uplink-MU massive-MIMO
system is presented.

As considered in [1], the uplink system model of M -users each with a single
transmitter antenna, describing a frequency selective Rayleigh fading channel
[16] under the assumption of transmit side power-ampilifier nonlinearity ( as
given in [17]).

The Rayleigh fading channel denoted by Hs is given by Hs∀s ∈ [0, T − 1]
where T is the memory of the channel, the correlation factorρ is considered in

the fading channel as in [18], Hs = R
1
2
1 H′sR

1
2
2 where

R1 = Toeplitz([1, ρ2, ρ4, . . . , ρ2N−2])

R2 = Toeplitz([1, ρ2, ρ4, . . . , ρ2M−2])

H′s ∈ CN (0, 1)

Thus the recieved signal can be written as:

yi = ΣT−1
s=0 Hsf(xi−s) + ni (1)

where yi ∈ CN is the received signal. For Hs,s=0 ∈ CNM we have the LOS
path with the fixed rice factor as given in [16]. The Hs,s 6=0 ∈ CNM is a complex
Gaussian matrix with zero mean and unit variance denoted as H ∼ CN (0, 1).
Where N(>> M) is the number of antennas, subscript (·)i denotes the value of
quantity at the ith time instant. For a MU massive MIMO, N ≥ 10M is chosen.
The f(·) is the transmit side power amplifier which in general is a non-linear
function modelled by Rapp model as given in [17] that is used in [1]. The vector
xi denotes the transmitted symbols of all the M -users at the ith time instant,
is the transmitted vector. The noise vector ni ∈ CN is additive white Gaussian
noise for the ith instant and can be denoted as ni ∼ CN (0, σ2I), where σ2

denotes the variance of the random Gaussian variable.

15



5.3 Proposed Technique

In this chapter, a technique is proposed to solve for xi from given yi as given
in equation (1).

The method is divided in three parts namely, a) Block mapping to RKHS
as in [1], b) Kernel approximation using RFF , and c) KLMS-Regression based
detector

Block mapping to RKHS As given in [1], for the lth block of the channel
matrix, Hl is defined as:

H = [H1TH2T . . .HLT ]T

Thus, size of HL is N
L ×M . The L is taken in the bounds that N

L >> M
Also, the disjoint blocks of yi, yli at time instant i can be given as:

yi = [y1T

i y2T

i . . .yL
T

i ]T

Thus the relation for the disjoint blocks is:

yli =

T−1∑
s=0

Hl
sf(xi−s) + nli (2)

where nli is the lth block of the noise vector ni

Kernel approximation using RFF As RFF can be applied to Kernels
which satisfy the conditions given in Theorem ??, the kernel chosen is:

κ(xi,xj) = exp
(
−γ||[R(xi)

T , I(xi)
T ]T − [R(xj)

T , I(xj)
T ]T ||2

)
where R(·) returns the real part of the input and I(·) returns the imaginary
part of the input.

As the kernel function is Gaussian Ω can be found using RFF (Theorem ??)
as given in chapter ?? such that κ(xi,xj) = 〈zΩ(xi), zΩ(xj)〉.

After
x̂i = WzΩ(yi)

Where W is the weight vector used for regression, as discussed in the next
paragraph.

For parallelization, we can define Ωl as Ω = [Ω1,Ω2, . . . ,ΩL] and Ωl is of size
d+ 1× D

L , where D is the number of random Fourier features used.
Thus,

zΩl(x) =

√
2

D


cos(ωT(L∗(l−1)+1)x+ b(L∗(l−1)+1))

cos(ωT(L∗(l−1)+2)x+ b(L∗(l−1)+2))
...

cos(ωT(L∗l)x+ b(L∗l))


16



x̂li = W lzΩl(y
l
i)

Where W l is defined using W as W = [W 1,W 2, . . . ,WL] Where W l is of
size N × D

L

KLMS-Regression based detector Let the predicted transmitted symbol
be x̂. Thus, we want to find W such that, x̂i = WTyi. For lth block, x̂li =

W lT yi.
Thereafter, x̂i can be written as the x̂li which appears most number of times

for l ∈ [1, L].
The proposed method involves training and testing of the weight vector Wi

where i denotes the iteration till which the weights are trained.

Initialize step-size η; W l = 0N×DL
∀l ∈ [1, L]; yli ∀i,∀l ∈ [1, L]

for l from 1 toL do
for i from 1 to Num training do

x̂li = qamdemod(W l · zΩl(y
l
i))

W l = W l + η(xi −W lzΩl(y
l
i))z

T
Ωl(y

l
i)

end
Here we can calculate the BER per iteration during training

end
while i > 0 do

for l from 1 toL do
x̂li = qamdemod(W l · zΩl(y

l
i))

end
for u from 1 toM do

x̂i(u) = mode { x̂li(u) ∀l }
end

end
Algorithm 1: Training Algorithm for Proposed KLMS based detector with
low space complexity

After the training, we have used the trained model to determine recieved
signal.
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5.4 Simulations

The problem of RKHS based parallel non-linear channel detection of massive-
MIMO was extended as an equivalent approximate parallel linear channel de-
tection for massive-MIMO using RFFs.

For the given input from the reciever antennas, the input vector was divided
into L blocks of size N

L ×1. Each node provides a soft estimate of symobls upon
convergence, which are fused by majority voting after demodulation.

Additionally, kernel function was changed to a more stable and rotation
independent function because the kernel approximation using RFF is defined
on positive definite and shift invariant kernels, however, the initial kernel was
rotation dependent, thus the new kernel is easily approximated using the method
proposed in [3].

Figure 5: Y axis: BER, X axis: SNR(in dB)
Number of RFF D = 200

The number of Random Fourier Features used in the experiment were 200
for a kernel width of 1. The algorithm was trained for 5000 samples and then
tested for 105 samples. The BER vs SNR is plotted in Figure ?? for L=1,2,4,8
and it can be observed that the proposed detector can achieve reasonable BER
performance without a dictionary using RFFs for memoryless channel.

In figure ?? the BER vs SNR is plotted. The simulation was ran for 4
users and 160 antennas and for a memoryless channel. Four different scenarios

18



considered are: a)L = 1, b)L = 2, c)L = 4 and d)L = 8. The computational
cost comes out to be O(D), where D is the number of RFFs used; as there
is no need to evaluate Gram Matrix which takes M ×M which is avoided by
using RFF approximation of the kernel function. Also, the space complexity of
the algorithm is O(D) as the dictionary is not used, which makes the proposed
methodology practically viable.

It is also observed that for lower number of nodes, L << N , the BER is
considerably low as compared to when N

L = 20.

Figure 6: Y axis: MSE, X axis: Iterations
Number of RFF D = 200

In figure ??, the MSE over time for L=1,2,4,8 are plotted. It is observed
that for higher number of nodes, computational complexity per node reduces;
however the BER and MSE increases due to reduction in input - regression
dimensions available to each node.
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A Appendix A

In this chapter, Reproducing Kernel Spaces will be briefed from ground up as
done in [19]

A.1 Vector space

Defined over Ordered field F as V as (V ,F ,⊕,⊗,0v). The vectors in vector
space may be added together and multiplied by a number called scalar. The
operations are defined as:

• Addition(⊕) is defined as ⊕:V × V → V wherein the resultant vector is
called sum of vectors and represented by v ⊕ w where v and w are the
input vectors.

• Scalar Multiplication(⊗) is defined as ⊗:C×V→ V wherein the resultant
vector is represented by a⊗v where a is a complex scalar and v is a vector.

The operations must satisfy following axioms:

• Associativity of addition
u+ (v + w) = (u+ v) + w

• Commutativity of addition
u+ v = v + u

• Identity element of addition
0 ∈ V called a zero vector such that v + 0 = v

• Inverse elements of addition
For every v ∈ V there exist a vector −v ∈ V such that v + (−v) = 0

• Compatibility of scalar multiplication with field multiplication
a(bv) = (ab)v v ∈ V, a, b ∈ C

• Identity element of scalar multiplication
1⊗ v = v where 1 represents multiplicative identity in V

• Distributivity of scalar multiplication with respect to vector addition
a(u+ v) = au+ av

• Distributivity of scalar multiplication with respect to field addition
(a+ b)v = av + bv

⊕ for sum of two vectors 	 for additive inverse ⊗ for scalar multiplication. Here,
u, v, w ∈ V and a, b ∈ C

A.2 Banach Space

Norm is defined as ||X||(.) where (.) denotes the corresponding Banach space.
Every normed space X can be isometrically embedded in a Banach space.

More precisely, for every normed space X, there exist a Banach space Y and a
mapping T : X→ Y such that T is an isometric mapping and T (X) is dense in
Y. If Z is another Banach space such that there is an isometric isomorphism
from X onto a dense subset of Z, then Z is isometrically isomorphic to Y.
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||〈xi〉ni=1||p =

(
n∑
i=1

|xi|p
) 1
p

For infinite sequences, the norm must not diverge for given p,
Thus, a space lp (pronounced “little ell p”) as:

lp =

{
〈xi〉∞i=0 :

∞∑
i=0

|xi|p <∞

}

So, we define norm on lp as:

||〈xi〉∞i=0||lp =

( ∞∑
i=0

|xi|p
) 1
p

For norm on function spaces,

||f ||sup = sup
x∈X
|f(x)|

This is called natural norm or uniform norm or sup norm. i.e. this is the highest
(supremum) value that f takes on all of X. this is analogous to the ∞ norm
defined for sequences.

Further, we define the notion of an Lp (“ell p”) iver function from Rn to R.

Lp =

{
(f : Rn → R) :

∫ ∞
−∞
|fp(x)|dx <∞

}
we define a norm on Lp by:

||f ||Lp =

(∫ ∞
−∞
|fp(x)|dx

) 1
p

A.3 Hilbert Space

A Banach space with inner product 〈x, y〉H or 〈x, y〉 also represented as x.y

x.y =
∑
i

xiyi

For infinite dimensional space, 〈f, g〉 =
∫∞
−∞ f(x)g(x)dx

Properties:

• Symmetry- commutative over inner product (or say conjugate inverse com-
mutative over inner product)

• Linear over first argument and conjugate linear over second argument
〈x, ay1 + by2〉 = ā〈x, y1〉+ b̄〈x, y2〉 and 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉
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〈x, ay1 + by2〉 = ā〈x, y1〉+ b̄〈x, y2〉

and
〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉

• Positive definiteness 〈u, u〉 ≥ 0

〈u, u〉 ≥ 0

here equality holds only when u = 0

Given complete vector space V with dot product 〈·, ·〉V, we can easily define
a norm on V by ||u||V =

√
〈u, u〉

B Appendix B
Transient Analysis of Diffusion

In this section, the transient analysis of Diffusion Techniques will be reviewed
as done in [20].

B.1 Mean transient Analysis LMS

∼
w
i
, w(o) − wi

Now as Gw(o) = w(o), we get

∼
w
i

= Gw(o)−Gwi−1−DU∗i
(
Uiw

(o) + vi − UiGwi−1
)

= (INM−DU∗i Ui)G
∼
w
i−1
−DU∗i vi

Assuming noise to gaussian with 0 mean,

E
∼
w
i

= (INM −DRu)GE
∼
w
i−1

where Ru = diag{Ru,1, . . . , Ru,N} is a block diagonal and Ru,k = Eu∗k,iuk,i
So, for stablity in mean, |λ(BG)| < 1 where B = (INM −DRu)
Now considering Non cooperation,

E
∼
w
i

= BE
∼
w
i−1

∴ ||BG||2 ≤ ||B||2 · ||G||2

And as Ru is B is Hermitian.
And as G = A⊗ IM ,

∴ |λmax(BG)| ≤ ||A||2 · |λmax(B)|

As ||A||2 ≤ 1 (1 for double stochastic matrix)

∴ |λ(BG)| ≤ |λ(B)|
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B.2 Mean Square Transient Analysis

B.2.1 Weighted Energy and Variance Relations

ek(i) = dk(i)− uk,iψi−1
k

ei = di − UiGwi−1 = UiG
∼
w
i−1

+ vi , eGa,i + vi
where

eGa,i = UiG
∼
w
i−1

and
∼
w
i

= G
∼
w
i−1
−DU∗i ei

Taking different cases for ariori and posteriori weighted estimation errors:

eDΣG
a,i , UiDΣG

∼
w
i−1

andeDΣ
p,i , UiDΣ

∼
w
i

For some arbitrary matrix ΣNM×NM ≥ 0. The freedom in selecting Σ will
enable us later to characterize the MSD and EMSE performance of the network.

E||∼w
i
||2Σ = E||∼w

i−1
||2G∗ΣG − E(eDΣG

a,i )∗eGa,i − E(eGa,i)
∗eDΣG
a,i + E(eGa,i)

∗UiDΣDU∗i e
G
a,i + Ev∗i UiDΣDU∗i vi

E||∼w
i
||2Σ′ = E||∼w

i−1
||2G∗Σ′G + Ev∗i UiDΣDU∗i vi

here Σ′ is:

Σ′ = G∗ΣG−G∗ΣDU∗i UiG−G∗U∗i UiDΣG+G∗U∗i UiDΣDU∗i UiG

As the weighting matrix Σ′ is data dependent however, as such it is a random
quantity. This makes analysis challenging so we make the assumption that Ui

is independent of
∼
w
i−1

. In this way, the random weighting matrix Σ′ can be
replace by its mean value Σ′ = EΣ′

E||∼w
i
||2Σ′ = E||∼w

i−1
||2G∗Σ′G + Ev∗i UiDΣDU∗i vi

Σ′ = G∗ΣG−G∗ΣDE(U∗i Ui)G−G∗E(U∗i Ui)DΣG+G∗E(U∗i UiDΣDU∗i Ui)G

B.3 The Case of Gaussian Regressors

Doing the eigendecomposition ofRu = TΛT ∗, where Λ = diag{Λ1, . . . ,ΛN},Λk >
0 are diagonal.

wi = T ∗
∼
w
i
, U i = UiT,G = T ∗GT

Σ = T ∗ΣT,Σ
′

= T ∗Σ′T,D = T ∗DT = D

Then,

E||wi||2
Σ
′ = E||wi−1||2

G∗Σ
′
G

+ Ev∗i UiDΣDUi
∗
vi

Σ
′

= G
∗
ΣG−G∗ΣDE(Ui

∗
Ui)G−G

∗
E(Ui

∗
Ui)DΣG+G

∗
E(Ui

∗
UiDΣDUi

∗
Ui)G
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As several quantities have a block diagonal structure, we can exploit it. We
will employ operation bvec{}, which converts a block matrix Σ into a single
column vector σ in two steps as follows. Let Σ be an NM ×NM block matrix
Σ = [Σk,l] where Σk,l is a M ×M matrix. First the block columns are stacked
on top of each other to give a N2M ×M matrix

Σl = col{Σ1l,Σ2l, . . . ,ΣNl}, l = 1, 2, . . . , N
Σc = col{Σ1,Σ2, . . . ,ΣN}

σl = col{σ1l, σ2l, . . . , σNl}withσkl = vec{Σkl}
σ = col{σ1, σ2, . . . , σN}

We write σ = bvec{Σ} to denote conversion of Σ into a single column. We
also write Σ = bvec{σ} to recover the original block matrix form of the column
vector σ.

AΣB = (B �AT )σ

Σ
′

= G
∗
ΣG−G∗ΣDE(Ui

∗
Ui)G−G

∗
E(Ui

∗
Ui)DΣG+G

∗
E(Ui

∗
UiDΣDUi

∗
Ui)G

EUi
∗
Ui = Λ

bvec{G∗ΣDΛG} =
(
G� (G)∗

)
bvec{INMΣDΛ} =

(
G�G∗

)
(INM �DΛ)σ

bvec{G∗ΛDΣG} =
(
G�G∗

)
(DΛ� INM )σ

Ev∗i UiDΣDUi
∗
vi = Tr

{
ΛvEUiDΣDUi

∗}
Where Λv > 0 is a diagonal matrix given by

Λv = diag{σ2
v,1, σ

2
v,2, . . . , σ

2
v,N}

The entries of EUiDΣDUi
∗

is given by

EUiDΣDUi
∗

= diag
{
µ2
kTr

(
ΛkΣkk

)}
= diag{µ2

kλ
T
k σkk}

where λk = vec{Λk} and σkl = vec{Σ}

Ev∗i UiDΣDUi
∗
vi = bTσ

with b =bvec
{
RvD

2Λ
}

, Rv = Λv � Im

bvec
{
G
∗
E(Ui

∗
UiDΣDUi

∗
Ui)G

}
=
(
G�G∗

T
)
· bvec

{
E(Ui

∗
UiDΣDUi

∗
Ui)
}

Now as both Ui
∗
Ui and D are block diagonal, so that

E(Ui
∗
UiDΣDUi

∗
Ui) = DE(Ui

∗
UiΣUi

∗
Ui)D
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Which gives:

bvec
{
G
∗
E(Ui

∗
UiDΣDUi

∗
Ui)G

}
=
(
G�G∗

T
)

(D �D)bvec{A}

where A , E(Ui
∗
UiΣUi

∗
Ui)

The M ×M kl-block of A is given by

Akl = Euk,i
∗uk,iΣul,i

∗ul,i (3)

=

{
ΛkTr(ΛkΣkk) + γΛkΣkkΛk, k = l

ΛkΣklΛl, k 6= l
(4)

(5)

where γ = 1 for complex data and γ = 2 for real data. Now express A as

A = [A1A2 . . . AN ]and,a , bvec{A} = Aσ

where Al is a diagonal matrix
Thus, we can summarize the results as

E||wi||2σ = E||wi−1||2
Fσ

+ btσ

F = (G�G∗
T

)[IN2M2 − (INM � ΛD)− (ΛD � INM ) + (D �D)A]σ

We can find the learning rate by the recursion

E||wi||2σ = E||wi−1||2σ + btF
i
σ − ||w(o)||2

F
i
(I−F )σ

akl = vec{Akl} =

{
(λkλ

T
k + γΛk ⊗ Λk)σkk, k = l

(Λk ⊗ Λl)σkl, k 6= l

al = col{(Λ1 ⊗ Λl)σ1l, (Λ2 ⊗ Λl)σ2l, . . . , (λlλ
T
l + γΛl ⊗ Λl)σll, . . . , (ΛN ⊗ Λl)σNl} , Akσl

where
Al = diag{(Λ1 ⊗ Λl), (Λ2 ⊗ Λl), . . . , (λlλ

T
l + γΛl ⊗ Λl), . . . , (ΛN ⊗ Λl)}

bvec{A} = col{A1σ1,A2σ2, . . . ,ANσN} = Aσ
A = diag{A1,A2, . . . ,AN}
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